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Lemma 1.  Note that 0 < sa(x) < sb(x) for all x > 0.   

(i)  Suppose L(s, x) < d.  Part (a) in the definition of SRE implies L(s, x) = (s/x)1/(1-α) < 

d and thus s < sa(x).  

(ii) Suppose L(s, x) = d.  The first order condition for part (b)(i) in the definition of 

SRE implies αsdα-1 ≤ x and thus s ≤ sb(x).  Part (b)(ii) in the definition of SRE 

implies sdα - xd ≥ 0, and thus sa(x) ≤ s.  

(iii) Suppose L(s, x) > d.  The first order condition for part (b)(i) in the definition of 

SRE implies L(s, x) = (αs/x)1/(1-α) > d and thus sb(x) < s.  

(iv) Suppose s < sa(x).  If L(s, x) = d then result (ii) implies sa(x) ≤ s, which is a 

contradiction.  If L(s, x) > d then result (iii) implies sa(x) < sb(x) < s, which is a 

contradiction.  Thus result (i) applies and (a) in Lemma 1 is true. 

(v) Suppose sa(x) ≤ s ≤ sb(x).  If L(s, x) < d then result (i) implies s < sa(x), which is a 

contradiction.  If L(s, x) > d then result (iii) implies s > sb(x), which is a 

contradiction.  Thus result (ii) applies and (b) in Lemma 1 is true. 

(vi) Suppose sb(x) < s.  If L(s, x) < d then result (i) implies s < sa(x) < sb(x), which is a 

contradiction.  If L(s, x) = d then result (ii) implies s ≤ sb(x) which is a 

contradiction.  Thus result (iii) applies and (c) in Lemma 1 is true. 
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Lemma 2.  The "only if" statement follows from the definition of SRE.  Here we assume 

N = ∫01 L(s, x)ds and prove the "if" statement.  Suppose in what follows that conditions 

(a), (b), and (c) from Lemma 1 are all satisfied.   

(a) If L(s, x) < d, Lemma 1(a) implies L(s, x) = (s/x)1/(1-α).  This gives x = sL(s, x)α-1.  

Thus part (a) in the definition of SRE is satisfied for the given x. 

(b) If L(s, x) = d, Lemma 1(b) implies sa(x) ≤ s ≤ sb(x).  The latter inequality gives 

αsdα-1 ≤ x, which is the first order condition for L = d to be a solution in part (b)(i) 

of the definition of SRE.  This is sufficient for a maximum due to the concavity of 

the objective function.  The former inequality gives sdα - xd ≥ 0, so r(s) ≥ 0 holds.  

Thus part (b)(ii) in the definition of SRE is also satisfied for the given x. 

(c) If L(s, x) > d, Lemma 1(c) implies L(s, x) = (αs/x)1/(1-α) and sb(x) < s.  The latter 

inequality implies that L(s, x) obeys the first order condition to be a solution in 

part (b)(i) of the definition of SRE.  This is sufficient for a maximum due to the 

concavity of the objective function.  Direct computation shows that r(s) ≥ 0 also 

holds.  Thus part (b)(ii) in the definition of SRE is also satisfied for the given x.  

 
Proposition 1.  For parts (a), (b), and (c), we first prove the implications from x to D(x).  

The implications from N to x will be established at the end of the proof.   

(a) xa < x implies 1 < sa(x).  All sites are open.  The result for D(x) is obtained by 

integrating the density from Lemma 1(a) on [0, 1]. 

(b) xb ≤ x ≤ xa implies sa(x) ≤ 1 ≤ sb(x).  All sites are open or unstratified.  The result 

for D(x) is obtained by integrating the density from Lemma 1(a) on [0, sa(x)] and 

the constant d from Lemma 1(b) on [sa(x), 1]. 
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(c) x < xb implies sb(x) < 1.  Some sites are open, some are unstratified, and some are 

stratified.  The result for D(x) is obtained by integrating the density from Lemma 

1(a) on [0, sa(w)], the constant d from Lemma 1(b) on [sa(w), sb(w)], and the 

density from Lemma 1(c) on [sb(w), 1]. 

(d) Continuity of the derivative at xa and xb can be verified by direct computations.  

Continuity of the derivative elsewhere is obvious.  It can also be shown through 

computations that the derivative is always negative.  The limiting values of D(x) 

follow from the results in parts (a) and (c). 

(e) The existence of a unique x > 0 such that D(x) = N follows from N > 0, the limits 

of D(x), the continuity of D(x), and the fact that D(x) is decreasing.  The fact that 

this x and the associated density L(⋅, x) from Lemma 1 form a SRE follows from 

Lemma 2.  The implicit function theorem shows that the equilibrium wage x(N) is 

continuously differentiable with xʹ′(N) < 0.  The limit results for x(N) follow from 

the limit results for D(x) in part (d). 

Using the result for D(x) in part (b), we have Na = D(xa) and Nb = D(xb), or equivalently 

xa = x(Na) and xb = x(Nb).  Because x(N) is decreasing, N < Na implies xa < x(N); Na ≤ N 

≤ Nb implies xb ≤ x(N) ≤ xa; and Nb < N implies x(N) < xb.  This completes the proof for 

parts (a), (b), and (c) above. 

 
Proposition 2. 

(a) From Proposition 1, N < Na implies xa < x.  This gives 1 < sa(x) so all sites are 

open.  The result for φ(x) is obtained using the density L(s, x) = (s/x)1/(1-α) from 

Lemma 1(a) on [0, 1]. 



	
   4	
  

(b) From Proposition 1, Na ≤ N ≤ Nb implies xb ≤ x ≤ xa.  This gives sa(x) ≤ 1 ≤ sb(x) 

so that all sites are open or unstratified.  The result for φ(x) is obtained using the 

density L(s, x) = (s/x)1/(1-α) from Lemma 1(a) on [0, sa(x)) and L(s, x) = d from 

Lemma 1(b) on [sa(x), 1]. 

(c) From Proposition 1, Nb < N implies x < xb.  This gives sb(x) < 1 so that some sites 

are open, some sites are unstratified, and some sites are stratified.  The result for 

φ(x) is obtained using the density L(s, x) = (s/x)1/(1-α) from Lemma 1(a) on [0, sa-

(x)); L(s, x) = d from Lemma 1(b) on [sa(x), sb(x)]; and L(s, x) = (αs/x)1/(1-α) from 

Lemma 1(c) on (sb(x), 1]. 

Continuity of φʹ′(x) at xa and xb can be verified by computation.  Continuity of φʹ′(x) for all 

other x > 0 is obvious.  It can be shown by computation that φʹ′(x) < 0 for all x > 0.  Part 

(e) of Proposition 1 ensures that xʹ′(N) is continuous and negative for all N > 0.  Together 

these results imply that Yʹ′(N) is continuous and positive for all N > 0. 

 
Corollary to Proposition 2. 

 (a) From Proposition 1(a) and N = D(x) we have x(N) = (Q/N)1/(1-α).  Using the 

solution for φ(x) from Proposition 2(a) along with (3) gives the result. 

(b) From Proposition 1(b) and N = D(x) we have x(N) = (d-N)(2-α)dα-2.  Using the 

solution for φ(x) from Proposition 2(b) along with (3) gives the result. 

(c) Consider N > Nb so that Proposition 2(c) applies.  We have Yʹ′(N) = φʹ′[x(N)]xʹ′(N) 

and Yʹ′ʹ′(N) = φʹ′ʹ′[x(N)][xʹ′(N)]2 + φʹ′[x(N)]xʹ′ʹ′(N).  From the identity N ≡ D[x(N)],  

   xʹ′(N) = 1/Dʹ′[x(N)]  and  xʹ′ʹ′(N) = -Dʹ′ʹ′[x(N)]/{Dʹ′[x(N)]}3.   

 Substituting these results into Yʹ′ʹ′(N) gives  
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   Yʹ′ʹ′(N) = -{φʹ′[x(N)]Dʹ′ʹ′[x(N)] - φʹ′ʹ′[x(N)]Dʹ′[x(N)]} / [Dʹ′(x(N))]3.   

 Since - 1/[Dʹ′(x(N))]3 > 0 from Proposition 1(d), the sign of Yʹ′ʹ′(N) is the same as 

the sign of φʹ′[x(N)]Dʹ′ʹ′[x(N)] - φʹ′ʹ′[x(N)]Dʹ′[x(N)].  It therefore suffices to study the 

sign of φʹ′(x)Dʹ′ʹ′(x) - φʹ′ʹ′(x)Dʹ′(x) on the interval x < xb.  Using Propositions 1(c) and 

2(c), some algebra shows that this expression has the same sign as the quadratic 

Av2 + Bv + C, where v ≡ x1/Q; A ≡ -d2(2-α)(1+α)/α2; B ≡ d2-ααα/(1-α)(1-α)-2(2+α-2α2); 

and C ≡  -α2/(1-α)(1-α)-2.  The quadratic is negative at v = 0 and positive at vb ≡ 

(xb)1/Q.  Since the quadratic is either rising throughout [0, vb) or has an interior 

maximum on this interval, there is a unique vc ∈ (0, vb) at which the quadratic is 

zero, with a negative sign for all v ∈ (0, vc) and a positive sign for all v ∈ (vc, vb).  

Thus there is a unique xc = (vc)Q ∈ (0, xb) such that φʹ′(x)Dʹ′ʹ′(x) - φʹ′ʹ′(x)Dʹ′(x) < 0 for 

x ∈ (0, xc); = 0 for x = xc; and > 0 for x ∈ (xc, xb).  Finally, this implies that there 

is a unique Nc = N(xc) > Nb such that Yʹ′ʹ′(N) > 0 for N ∈ (Nb, Nc); = 0 for N = Nc; 

and < 0 for N > Nc. 

(d) Continuous differentiability of Y(N)/N follows from continuous differentiability 

of Y(N), which was established in Proposition 2.  We want to show that Y(N)/N is 

globally decreasing.  This can be done by direct computation for 0 < N ≤ Nb using 

the results in parts (a) and (b) of the Corollary.  Suppose N > Nb, which implies x 

< xb and v < vb in the notation used in the proof of (c) above.  We will show that 

Yʹ′(N) - Y(N)/N < 0 for all N > Nb.  Using (3), the SRE identity N ≡ D[x(N)], and 

the implicit function theorem, we obtain Yʹ′(N) - Y(N)/N = φʹ′[x(N)]/Dʹ′[x(N)] - 

φ[x(N)]/D[x(N)].  Because Dʹ′[x(N)] < 0 from Proposition 1, this expression is 
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opposite in sign to φʹ′[x(N)]D[x(N)] - φ[x(N)]Dʹ′[x(N)].  It thus suffices to show 

that the latter expression is positive for all N > Nb, or equivalently that φʹ′(x)D(x) - 

φ(x)Dʹ′(x) > 0 for all x < xb.  Some algebra shows that this is true iff av2 + bv + c > 

0 for all v < vb where v ≡ x1/Q; a ≡ d2(2-α)(1+α)/2α1/Q; b ≡ d2-α(1/2 + α - 1/α); and c 

≡  α1/(1-α).  Since a > 0, this quadratic has a minimum value at vmin = -b/2a.  There 

are three cases: (i) vmin ≤ 0; (ii) 0 < vmin ≤ vb; and (iii) vb < vmin.  In case (i), the 

quadratic is equal to c > 0 at v = 0 and positive for all v > 0.  This yields the 

result.  In case (ii), it suffices to show that the value of the quadratic is positive at 

vmin.  This is true from vmin ≤ vb.  In case (iii), the quadratic is positive at vb, which 

implies that it is positive on [0, vb].  This establishes that Y(N)/N is decreasing as 

claimed.  The result lim N→0
 Y(N)/N = ∞ follows from part (a) of the Corollary.  To 

show that lim N→∞

 Y(N)/N = 0, note that Y(N)/N = φ[x(N)]/D[x(N)] where N → ∞ 

implies x → 0 from Proposition 1.  Computing this ratio as a function of x using 

Proposition 1(c) for the denominator and Proposition 2(c) for the numerator gives 

the desired result.  

 
Proposition 3. 

(a) The SRE conditions from section 2 are built into the definition of Y(N; θ) from 

section 3.  It suffices to show that for a fixed θ > 0, there is a unique N(θ) > 0 

such that Y[N(θ); θ]/N(θ) = 1/γ.  This follows from the results in part (d) of the 

Corollary to Proposition 2. 

(b) The LRE condition in (a) above and the implicit function theorem imply Nʹ′(θ) = 

Yθ[N(θ), θ] / {Y[N(θ); θ]/N(θ) - YN[N(θ); θ]} > 0 where the subscripts indicate 
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partial derivatives.  The inequality holds because the numerator is positive due to 

Proposition 2, and the denominator is positive due to part (d) of the Corollary.  

Continuity of Nʹ′(θ) follows from results in Proposition 2 and the Corollary.  For 

the limits, note that (3) in the text and the definition of LRE together imply 1/θγ = 

∫0
1 sL(s, x)α ds / D(x).  Consider θ → 0, which implies that the left hand side → ∞.  

Using Lemma 1 and Proposition 1, the right hand side → ∞ iff x → ∞.  Therefore 

θ → 0 implies x → ∞.  By Proposition 1(e), this implies N → 0.  This establishes 

lim	
  θ→0	
  N(θ)	
  =	
  0.	
  	
  The	
  other	
  limit	
  result	
  is	
  obtained	
  through	
  similar	
  reasoning.    

(c) From Proposition 1, Na and Nb are positive constants that do not depend on θ. 

Proposition 3(b) implies that there are unique productivity levels such that N(θa) = 

Na and N(θb) = Nb, with 0 < θa < θb because 0 < Na < Nb.   The first sentences of 

(i), (ii), and (iii) are immediate from the fact that N(θ) is increasing.  The second 

sentence of (i) results from the fact that N < Na implies xa < x due to Proposition 

1, and thus 1 < sa(x) in Lemma 1(a).  The second and third sentences of (ii) result 

from the fact that Na ≤ N ≤ Nb implies xb ≤ x ≤ xa due to Proposition 1, and thus 0 

< sa(x) ≤ 1 ≤ sb(x) in Lemma 1(b).   The second and third sentences of (iii) result 

from the fact that Nb < N implies x < xb due to Proposition 1, and thus 0 < sa(x) < 

sb(x) < 1 in Lemma 1(c).  With minor notational abuse, define sa(θ) ≡ sa[x(N(θ))] 

and sb(θ) ≡ sb[x(N(θ))] as in Lemma 1.  These functions are continuously 

differentiable because N(θ) and x(N) are both continuously differentiable.  They 

are decreasing because N(θ) is increasing and x(N) is decreasing.  The limit 
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results follow from the limit results in part (b) above, the limit results in 

Proposition 1(e), and the definitions of sa(x) and sb(x). 

(d) Continuous differentiability of w(θ) =  θx[N(θ)] follows from the continuous 

differentiability of x(N) and N(θ).  When θ ≤ θa we have N ≤ Na, xa ≤ x, and 1 ≤ 

sa.  All agents at all sites receive the food income w (including at s = 1 if 1 = sa 

because the marginal site has zero rent).  Thus LRE implies w = Y(N; θ)/N = 1/γ.  

For the rest of the proof we assume θa < θ so that Na < N(θ).  We need to show 

that wʹ′(θ) = x[N(θ)] + θxʹ′[N(θ)]Nʹ′(θ) < 0.  Upon substituting the result from part 

(b) above for Nʹ′(θ), differentiating (3) to obtain the marginal product YN(N, θ), 

using the linearity of Y(N; θ) as a function of θ in Proposition 2 to eliminate the 

partial derivative Yθ(N; θ), and using the implicit function theorem to obtain xʹ′(N) 

= 1/Dʹ′[x(N)] from Proposition 1(e), a necessary and sufficient condition for the 

desired result is φ(x)[xDʹ′(x) + D(x)] > xφʹ′(x)D(x) for all relevant values of x.  In 

the case where θa < θ ≤ θb we have Na < N ≤ Nb and xb ≤ x < xa.  Differentiating 

the functions from Propositions 1(b) and 2(b) yields an inequality involving a 

quadratic in x, which is satisfied for xb ≤ x < xa.  The other case is θb < θ, where 

we have Nb < N and x < xb.  Differentiating the functions from Propositions 1(c) 

and 2(c) yields an inequality that does not involve x and holds whenever α < 1. 

 
Proposition 4.  Using (4), we define za and zb so that sa = s(za) and sb = s(zb).   

(a) From (7), y1(z) > y2(z) for all 0 < z < 1 implies G1 < G2, so it suffices to establish 

the first claim.  We begin by considering the derivative yʹ′(z) of the Lorenz curve y(z) in 

(6).  The fraction of agents in the regional population who have the lowest income w is za 
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≡ (DO + DC)/N where DO is the number of agents at open sites and DC
 is the number of 

employed agents at stratified sites.  The fraction of regional income going to this set of 

agents is ya ≡ w(DO + DC)/Y.  Thus for z ∈ [0, za] we have yʹ′(z) = ya/za = wN/Y and the 

Lorenz curve is linear. 

 For z ∈ [za, 1] the derivative is yʹ′(z) = (N/Y)[w + r(s(z))/d] from (4), (5), and (6).  

The first derivative is continuous at za because s(za) = sa and r(sa) = 0.  For z ∈ [za, zb] the 

optimal labor input is L(s) = d by Lemma 1(b), which gives yʹ′(z) = (θN/Y)dα-1s(z).  From 

(4), this is linear and increasing in z.  For (za, zb] we have yʹ′ʹ′(z) = (θN2/Y)dα-2 > 0 which 

is independent of z so that y(z) is quadratic on this interval.  The second derivative yʹ′ʹ′(z) 

is discontinuous at za, where it jumps from zero to a positive number.   

 Whenever the interval (zb, 1] is non-empty, the envelope theorem can be used to 

disregard effects operating through the optimal labor input L(s), and this yields yʹ′ʹ′(z) = 

(θN2/Yd2)L[s(z)]α > 0.  This is larger than the second derivative on the quadratic interval 

(za, zb] because L[s(z)] > d from Lemma 1(c), and it is increasing in z because s(z) and 

L(s) are both increasing.  The first derivative yʹ′(z) is continuous at zb because s(z) and 

r(s) are both continuous.  Likewise yʹ′ʹ′(z) is continuous at zb because L(s) is continuous.  

 To compare the two Lorenz curves y1(z) and y2(z) from Proposition 4, we need to 

know how yʹ′(z) and yʹ′ʹ′(z) respond to changes in N.  We first show that the linear part of 

the Lorenz curve becomes flatter when N increases.  For N ∈ (Na, Nb] the ratio wN/Y can 

be expressed in terms of x using Propositions 1(b) and 2(b).  Differentiating with respect 

to x shows that wN/Y is increasing in x when a certain quadratic expression involving x 

is positive.  This requirement satisfied whenever xb ≤ x < xa, which follows from N ∈ (Na, 
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Nb].  Since wN/Y is increasing in x, it is decreasing in N.  For N > Nb, the ratio wN/Y can 

be expressed in terms of x using Propositions 1(c) and 2(c).  Algebra and differentiation 

show that the ratio is increasing in x whenever α < 1.  Thus, the ratio is again decreasing 

in N.  These results prove that y1ʹ′(z) > y2ʹ′(z) whenever both curves are linear: that is, for 

the non-degenerate interval 0 ≤ z ≤ min {z1
a, z2

a}. 

 Now consider the slope of the Lorenz curve at z = 1: that is, yʹ′(1).  When N ∈ (Na, 

Nb] we have L(1) = d and yʹ′(1) = (θN/Y)dα-1.  The productivity parameter θ cancels with 

θ in the output expression φ(x) from Proposition 2(b), so this parameter does not affect 

the slope yʹ′(1).  Part (d) of the corollary in section 3 shows that Y/N is decreasing in N so 

the ratio in parentheses is increasing in N.  When N > Nb, using L(1) = (α/x)1/(1-α)  from 

Lemma 1(c) gives yʹ′(1) = (θN/Yd)[xd + (1-α)(α/x)α/(1-α)].  As before, θN/Y is increasing 

in N, and the value of θ does not affect yʹ′(1).  The expression in brackets is decreasing in 

x whenever x < xb, which follows from N > Nb.  Therefore the expression in brackets is 

increasing in N, and yʹ′(1) is increasing in N.  We observe that yʹ′(1) is continuous with 

respect to N at Nb.  These results show that y1ʹ′(1) < y2ʹ′(1), and by continuity that y1ʹ′(z) < 

y2ʹ′(z) for all z in a non-degenerate neighborhood of z = 1. 

 By continuity, y1(z) - y2(z) has a maximum value at some z* ∈ [0, 1].  The results 

for y1ʹ′(z) and y2ʹ′(z) in the last two paragraphs together with y1(0) = y2(0) = 0 and y1(1) = 

y2(1) = 1 show that y1(z) - y2(z) is strictly positive on a neighborhood of z = 0 and also on 

a neighborhood of z = 1.  Thus for any maximizer z* we have y1(z*) - y2(z*) > 0 where 

z* is interior.  Accordingly, there must be at least one local maximizer of y1(z) - y2(z) on 

z ∈ (0, 1) at which y1ʹ′(z*) - y2ʹ′(z*) = 0. 
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 Suppose there is some interior point z0 ∈ (0, 1) at which y1(z0) - y2(z0) = 0 so the 

Lorenz curves intersect.  This implies that there are at least two distinct interior local 

maxima separated by an interior local minimum.  We will show that this is impossible. 

 First consider Na < N1 < N2 ≤ Nb.  From previous results y1(z) is linear on [0, z1
a] 

and quadratic on (z1
a, 1].  Likewise, y2(z) is linear on [0, z2

a] and quadratic on (z2
a, 1].  It 

can be shown that za is a decreasing function of N on the interval [Na, Nb], which implies 

0 < z2
a < z1

a.  Therefore y1ʹ′(z) - y2ʹ′(z) is a positive constant on [0, z2
a], and it decreases on 

(z2
a, z1

a] because y2 becomes quadratic while y1 remains linear.  For (z1
a, 1], both y1 and y2 

are quadratic.  Previous results give yʹ′ʹ′ = θN2/Ydα-2 whenever a Lorenz curve is quadratic.  

We have shown that the ratio θN/Y does not depend on θ and is increasing in N.  Thus yʹ′ʹ′ 

is increasing in N and y1ʹ′ʹ′(z) < y2ʹ′ʹ′(z) on (z1
a, 1].  This implies y1ʹ′(z) - y2ʹ′(z) is decreasing 

on (z1
a, 1].  Because y1ʹ′(z) - y2ʹ′(z) is initially a positive constant and decreases thereafter, 

there cannot be more than one z ∈ (0, 1) at which y1ʹ′(z) - y2ʹ′(z) = 0, so the Lorenz curves 

cannot intersect at an interior point.  This proves part (a) for the case Na < N1 < N2 ≤ Nb.    

  Next suppose Na < N1 ≤ Nb < N2.  As the preceding paragraph, y1(z) is linear on 

[0, z1
a] and quadratic on (z1

a, 1].  Ignoring possible equalities among the boundaries z1
a, 

z2
a, and z2

b, which do not affect the argument, there are three cases:  

(i)   0 < z1
a < z2

a < z2
b < 1;  

(ii)   0 < z2
a < z1

a < z2
b < 1; and  

(iii)   0 < z2
a < z2

b < z1
a < 1.   

 For case (i), y1ʹ′(z) - y2ʹ′(z) is initially a positive constant; then increases because y1 

becomes quadratic while y2 remains linear; then decreases because both are quadratic 

(repeating a previous argument); and continues to decrease because y1 remains quadratic 
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while the second derivative of y2 increases beyond quadratic.  Thus there cannot be more 

than one z ∈ (0, 1) at which y1ʹ′(z) - y2ʹ′(z) = 0.   

 For case (ii), y1ʹ′(z) - y2ʹ′(z) is initially a positive constant; then decreases because 

y1 remains linear while y2 becomes quadratic; then decreases because both are quadratic; 

and continues to decrease because y1 remains quadratic while the second derivative of y2 

increases beyond quadratic.   Thus there cannot be more than one z ∈ (0, 1) at which 

y1ʹ′(z) - y2ʹ′(z) = 0.   

 For case (iii), yʹ′1(z) - yʹ′2(z) is initially a positive constant; then decreases because 

y1 remains linear while ys becomes quadratic; then decreases because y1 remains linear 

while the second derivative of ys increases beyond quadratic; and then decreases because 

y1 is quadratic while y2 is beyond quadratic (note in the last case that y1ʹ′(z) - y2ʹ′(z) would 

be decreasing if both functions were quadratic, so this must also be true when the second 

derivative of y2 is even larger).  Thus there cannot be more than one z ∈ (0, 1) at which 

yʹ′1(z) - yʹ′2(z) = 0.  We have therefore shown that the Lorenz curves cannot intersect at an 

interior point in any of cases (i), (ii), or (iii) when Na < N1 ≤ Nb < N2.  This completes the 

proof of part (a) in Proposition 4. 

(b) To compute the Gini coefficient in (7), we need to compute ∫01 y(z) dz.  From (6), 

this has two components, one involving the wage and the other involving land rent.  The 

integral involving the wage is wN/2Y.  Using Propositions 1(b) and 2(b) along with Nb = 

2Qd and xb = αdα-1 gives wN/2Y = 2α / (2+α+α2) when this integral is evaluated at Nb.  

Using Propositions 1(c) and 2(c), wN/2Y approaches α/2 as N → ∞ and x → 0. 
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 To compute the rent component of ∫01 y(z) dz in the insider-outsider range where 

Na < N ≤ Nb and xb ≤ x < xa, we first calculate R(z) =  ∫0s(z) r(s) ds for za ≤ z ≤ 1 as in (5). 

Because no sites are stratified, r(s) = 0 for 0 ≤ s ≤ sa and r(s) = θ(sdα - xd) for sa ≤ s ≤ 1.  

We then compute ∫01 R(z) dz where R(z) = 0 for 0 ≤ z ≤ za and R(z) =  ∫0s(z) r(s) ds for za ≤ 

z ≤ 1.  Dividing by φ(x) from Proposition 2(b) gives ∫01 R(z) dz / Y.  Using Nb = 2Qd and 

xb = αdα-1 this ratio is ∫01 R(z) dz / Y = (2-α)2[(1-α3)/3(1-α) - α] / 2(1-α)(2+α+α2) at Nb.  

Adding this to the result in the preceding paragraph for wN/2Y to get ∫01 y(z) dz at Nb   

and then using (7) to compute the Gini coefficient yields the result for G(Nb) stated in 

Proposition 4(b).  This is the upper bound for insider-outsider inequality because part (a) 

showed that the Gini is increasing in N on the interval (Na, Nb].  It is the lower bound for 

elite-commoner inequality because part (a) showed that there is a relationship of Lorenz 

curve dominance between Nb and any N2 > Nb.  

 To compute the rent component of ∫01 y(z) dz in the elite-commoner range where 

Nb < N and x < xb, we first calculate R(z) =  ∫0s(z) r(s) ds for za ≤ z ≤ 1 as in (5).  Because 

some sites are now stratified, r(s) = 0 for 0 ≤ s ≤ sa; r(s) = θ(sdα - xd) for sa ≤ s ≤ sb; and 

r(s) = θ[s(αs/x)α/(1-­‐α)	
   - x(αs/x)1/(1-­‐α)] for sb < s ≤ 1.  We then compute ∫01 R(z) dz where 

R(z) = 0 for 0 ≤ z ≤ za and R(z) =  ∫0s(z) r(s) ds for za ≤ z ≤ 1.  Dividing by φ(x) from 

Proposition 2(c) gives ∫01 R[s(z)] dz / Y.  Letting N → ∞ and x → 0, it can be shown that 

this ratio approaches zero.  Combining this with the earlier result wN/2Y → α/2 implies 

∫0
1 y(z) dz → α/2.  Using (7) to compute the Gini coefficient yields the limit result stated 

in Proposition 4(b).  
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Proposition 5. 

 Landless agents fail to replace themselves because w < 1/γ from Proposition 3(d).  

The inequality θa < θ gives N > Na from Proposition 3 and x < xa from Proposition 1.  The 

latter result gives sa < 1.  The inequality sa < sr follows from w < 1/γ and x = w/θ.   

 Suppose θa < θ ≤ θb so that Na < N ≤ Nb, xb ≤ x < xa, and sa < 1 ≤ sb (no sites are 

stratified).  We want to show that sr < 1.  This is true if 1/γ = Y(N)/N < θdα-1 where the 

equality follows from the definition of LRE.   We can express the required inequality in 

terms of x as φ(x)/D(x) < θdα-1 where the ratio on the left is obtained from Propositions 

1(b) and 2(b).  This reduces to a quadratic expression in x that must be positive.  It can be 

shown that the latter expression is decreasing on [xb, xa) and zero at xa.  This gives sr < 1.  

 Suppose instead that θb < θ so that Nb < N, x < xb, and sa < sb < 1 (some sites are 

stratified).  We want to show that sr < sb.  This is true if 1/γ = Y(N)/N < θx/α where the 

equality follows from the definition of LRE.  We can express the required inequality in 

terms of x as φ(x)/D(x) < θx/α where the ratio on the left is obtained from Propositions 

1(c) and 2(c).  Some algebra shows that this is true when α < 1.  This gives sr < sb. 

 The result sr ∈ (sa, sb) implies L(sr) = d from Lemma 1.  By the definition of SRE 

in section 2 and the definition of sr in Proposition 5, each insider at sr has the income w + 

r(sr)/d = 1/γ.  This implies that these insiders exactly replace themselves.  The remainder 

of Proposition 5 follows from the fact that r(s) is continuous and increasing.   

 

 


